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Abstract 

The measuring signal of a calorimeter reproduces the or ig ina l  thermal event 

delayed and in a d is tor ted manner (smeared). The usual methods for  correct ing 

th is  d i s to r t i on  require much e f f o r t .  Proceeding from a simple equivalent c i r c u i t  

diagram for  the calor imeter,  an approximate correct ion for  the smearing is shown 

which el iminates the greatest part of the d i s to r t i on .  Using the example of a 

d i f f e r e n t i a l  heat f l ux  calor imeter,  i t  is shown how one can determine the ca- 

lor imeter 's  time constants needed for  the correct ion.  The constants are derived 

by means of response funct ions to e l e c t r i c a l l y  generated heat pulses or to melt- 

ing peaks. 

De f in i t i on  of the Problem 

Most ca lor ic  measurements are performed in order to determine reaction en- 

thalp ies.  Beyond that ,  scanning calorimeters provide the p o s s i b i l i t y  of study- 

ing the course of heat release or absorption with time. Thus, calorimeters a l -  

low k ine t ic  invest igat ions.  

In every calor imeter,  the sensor for  measuring the ca lo r i c  signal is not at 

the s i te  of the sample. For th is  reason, the sensor reproduces a d is tor ted s ig-  

nal which is delayed compared to the reaction i t s e l f .  This e f fec t  is known as 

"smearing". 

For k ine t ic  invest igat ions i t  is necessary 

- to estimate the size of the smearing and i t s  inf luence on the measure- 

ment resu l ts ,  or, bet ter ,  

- to determine the smearing quan t i t a t i ve l y  and correct for  i t .  

Possible Methods of De-smearing 

In principle, i t  is possible to set up and solve the heat conduction equa- 

tion of the calorimeter. For this, numeric procedures in computers are avail- 

able nowadays. Thus, i t  should be possible to determine quantitatively t he  

smearing and hence to correct for i t .  
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This method has the fol lowing disadvantages. Often, some of the data of the 

calorimeter relevant to heat conduction are not known (the exact size and ther- 

mal properties of a l l  the construction elements, the transfer resistances at 

junction points of the various elements, the radiat ion character ist ics of sur- 

faces, the influence of convection, e tc . ) .  The thermal boundary conditions can- 

not be f u l l y  specif ied. Thus th is method is only applicable for  r e l a t i ve l y  sim- 

ple geometries of the measuring system. In any case the calculat ions involved 

are extensive. 

But above a l l ,  one gets more information than is needed: for  de-smearing 

the temperature f i e ld  in the calorimeter and i t s  development in time need not 

be known. Only the re la t ion between the heat production Q(t) of the sample and 

the calor ic  measurement signal U(t) is of importance: 

( t ) - ~ - ~ - u  (t). 

The Test and Response Function Method 

The re la t ion between Q(t) and U(t) can be determined by the test  and re- 

sponse function method. This method is used quite often ( for  basic data and 

examples see /1 ,2 / ) .  Here the measuring system is conceived of as a "black box" 

which transforms the input s ignal ,  the rate of heat production Q(t) ,  into the 

calor ic  measuring signal U(t):  

( t ) - - -~Ca lo r imete r~ - - i -U  ( t )  ( I )  

The transfer behavior of th is system must be l inear ,  as can be ve r i f i ed ,  for  

example, by ca l ibrat ion experiments. Due to the l i n e a r i t y  of the heat conduc- 

t ion equation, this requirement is normally f u l f i l l e d  by isothermally operated 

calorimeters and well approximated with anisothermal operation. 

I f  one knows the t ransfer  character ist ics of such a measuring system, one 

can calculate backwards from the measured signal U(t) ar is ing from any given 

reaction to the respective heat dissipat ion Q(t) at the s i te  of the sample. This 

calculat ion is referred to as a de-smearing of the measurement curve. The trans- 

fer  character ist ics can be determined by s tar t ing a reaction with known time be- 

havior at the sample s i te  ( tes t  function) and register ing the corresponding 

measurement curve (response funct ion). I t  is convenient that the heat- f lux cal-  

orimeter used here (Type MCB) has at the measuring cel l  an e lec t r i c  ca l ibrat ion 

resistance in which a short e lec t r i c  heat pulse can be released. The correspond- 

ing measurement s ignal ,  the so-called pulse response, is registered. 
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However, any other physico-chemical reaction is suitable for producing the 

test function, provided one knows the heat release as a function of-time. In 

the l i terature several calculation methods are given for de-smearing any meas- 

urement signal i f  the test and response functions are known, for instance con- 

versions using the transfer function of the system in Fourier or Laplace rep- 

resentation, or various recurrence or i teration methods (see / I /  and /2 / ) .  The 

mathematics involved are quite extensive and s t i l l  do not always lead to satis- 

factory results. This Can arise either from peculiarit ies of the calculation 

methods themselves or from the influence of signal noise. I t  can also be that 

the calculation prerequisites are only approximately f u l f i l l e d .  

Therefore, the following shall show a simplified method for de-smearing, 

parts of which have previously been used in earl ier publications, e.g. /3/ .  

The method corrects the smearing of the measurement curve only approximately 

and permits an estimation of the residual error. For this purpose a simple 

equivalent c i rcu i t  diagram w i l l  be introduced with which the transfer behavior 

of a calorimeter can be simulated. 

Electric Equivalent Circuit  Representing the Calorimeter 

A caloric measuring system which shows a linear transfer behavior can be 

simulated by a series connection of non-retroacting f i rst -order transfer ele- 

ments plus a time-lag element /4/.  

A lag element simply corresponds to a time sh i f t  amounting to a dead time 

t d. A f i r s t  order transfer element is most simply respresented by an electr ic 

R-C element which is decoupled at input and output by pre- and post-connected 

amplifiers (F ig. l ) .  I ts transfer characteristics are f u l l y  described by the 

def ini t ion of the amplification A and the time constant t = R.C. A pulse-like 

input signal a(t) is followed at the output by a step (A/t) followed by an 

exponential decrease to zero: 

- - ~ f  1 0 for t < 0 

( t )  (A/t) • exp (- t /T) for t > 0 (2) 

o o 

U,N T C  Uart "1; = R ' C  

Fig. 1: Non-retroacting f i rst -order 
transfer element. 
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The entire equivalent circuit diagram is shown in Fig. 2. 

Fig. 2: Electric equivalent circuit 
representing the calorimeter 
without time-lag element. 

The time behavior is given by the definition of the total amplification A, the 

dead time td and the time constants TV .., T,,. If enough elements are used and 

the parameters chosen correctly, any caloric measuring system can be simulated. 

In practice, two to four such elements are completely sufficient /5/. Since the 

order of the elements in the circuit is interchangeable /6/, they can be ordered 

according to the size of their time constants (TV > 72 > ~3 . ..) without lim- 

iting the general validity of the method. 

The amplifying factor A can be very simply interpreted. If one changes the 

input signal of the equivalent circuit from zero to Uinand waits until the 

steady state is established, the potential at the output is Uout = A.Uin. Thus, 

A represents the sensitivity of the calorimeter. 

Correction for Smearing 

De-smearing consists of two steps. First, the parameters of the equivalent 

circuit diagram are determined by a pulse response (or another pair of test and 

response functions). Then, using the parameters one can calculate backwards 

from any measurement curve to the original heat production. 

The amplification A is eliminated by division, that is, the heat output is 

calculated from the electric signal by means of the sensitivity. The correction 

for the dead time consists simply of a shift of the scale by td. Since the shift 

amounts to only about 3 seconds for the given calorimeter, this correction can 

be neglected as apposed to the other lags. Where the dead time cannot be neg- 

lected it is quite simple to determine its value: first one applies the correc- 

tion described hereafter to both the measurement curve in question and the used 

response function. The best value for the dead time is obtained by shifting the 

thus corrected response function parallel to the time axis so far that it fits 

as well as possible to the respective test function. The measurement curve is 

then shifted by the dead time so determined. 
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The correct ion fo r  a s ingle t ransfer  element (Fig. 1) can eas i ly  be stated: 

Uin ( t )  = Uou t ( t )  + z • 
d Uou t (t) 

d t  
(3) 

This can be seen c lear l y  (Fig. 3) in the example of a sudden jump in the input 

signal Uin (step funct ion)  to which the t ransfer  element reacts with an expo- 

nent ia l  increase up to a constant f ina l  value. The d i f f e r e n t i a l  of the output 

signal reproduces exact ly the shape of that  part of the step funct ion which was 

"swallowed" by the system. I f  th is  d i f f e r e n t i a l ,  mu l t i p l i ed  by z, is again 

added, the input step funct ion is reproduced. Since any funct ion can be de- 

scribed as the sum of step funct ions,  th is  correct ion is also appl icable for  

any shape of Uin. 

UIN I ~  ~'~'l-~E-J "--~ ~ UOUT 

U o. U~t/A 
Uo" e ( t ) .  (1-exp(-t/ '~)) 

"'~0o- e ( t )  exp(-t/~: )) 

u~, °'" - e(t ) - u~ 

+ I ~  +1;" Oou T 

HCORR. 
= 1 = rOUT 

Fig. 3: Correction of smearing for a f irst-order transfer element, 
- -  o(t) = Step function. 

Al l  of the smearing can be corrected successively by the above Equation 

(3): 
U o = Uou t / A 

U1 = Uo + ~1 " Uo 

U2 = UI + T2 " U1 (Ui = dUi/dt) 

etc. 

(4) 

We w i l l  now apply th is  method to a pract ica l  example. 

Character ist ics of the Calorimeter 

The calorimeter used at the I n s t i t u t  fur  Werkstoffe is a d i f f e r e n t i a l  heat 

f l ux  calor imeter of the type MCB (made by Thermanalyse of Grenoble, see Fig.4) .  
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Fig. 4: Cross sectional view of the MCB calorimeter. 

A special feature of this calorimeter are the built-in calibration resistors. 

They allow a simple calibration of the calorimeter (more details in Ref. /7/) 

and the generation of a heat pulse in the measuring cell as a test function. 

For this purpose a current of 50 mA is sent through the 120 R calibration re- 

sistor of the measuring cell for approximately 0.3 seconds (Total energy re- 

leased B 100 mJ). The response to such a short energy release (Fig. 5) does 

not differ from a real pulse response because of the thermal intertia of the 

calorimeter. 

. s 

. ” 8 . . 

\ #. . 
. . a ‘. 

Fig. 5: Example of a pulse response of the MCB. T = 30°C, 
Sample and Reference each 2.73 g Copper. 

A disadvantage of the experimental set-up is that the heat is not released 

at the site of the sample. For this reason the registered pulse response only 

approximates that which would be obtained if the heat pulse would be released 

directly in the sample. From the simple models calculated in /l/ and /2/ it can 

be seen that the largest time constant T1 is caused by the total heat capacity 

of the cell and sample. For TV, these parts act as a whole. This is also shown 

by our own measurement results (see below). Since both the sample and the ca- 

libration resistor release the heat within this entity, T1 should be the same 

in both cases. The next largest time constant '2 is determined by the heat ca- 
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pacity of the sample and the heat t ransfer  between sample and ce l l .  Because of 

th i s ,  T 2 cannot be determined exact ly by use of a test  funct ion which does not 

release i t s  heat w i th in  the sample. This applies to a greater extent to subse- 

quent time constants. This is another reason why a correct ion beyond the f i r s t  

t ransfer  element does not seem feasib le.  

The Time Constants of the Used Calorimeter 

In order to determine Zl and ar r ive at an estimate of the size of the sub- 

sequent time constants (T2, T 3 . . . ) ,  responses to e lec t r i c  heat pulses were reg- 

istered isothermal ly at 30°C. For th is  purpose copper samples of various masses 

were put into the ce l l s .  Sample and reference sample were ident ica l  in every 

case. According to the method given in Ref . /5 / ,  the time constants were deter- 

mined. I t  turned out that three time constants 31 . . ,  T 3 suf f iced to describe 

the pulse responses f u l l y .  The largest time constant ~1 is shown in Fig. 6 as a 

funct ion of the heat capacity of the samples. 

9O 

u 
7o 

5O 

30 

i o 

05 10 15 

C [J/K] 

Fig. 6: Time constant T 1 as a funct ion of the 
heat capaci ty  C of  the specimen. 

I t  sa t i s f i es  a l i near  re la t ion  according to the equation 

T I : R • (C c + Cs) (4) 

(C c = Ccel l ,  C s = Csample ), as is usual for  a R-C element. The thermal res i s t -  
ance R resul ts  from the slope of the extrapolated s t ra igh t  l i ne  and the heat 

capacity of the ce l l  from i t s  point  of in tersect ion wi th the ordinate. The value 

of 1.64 J/K for  C c is in qui te good agreement with the value which can be calcu- 

lated using the ce l l  dimensions and the spec i f ic  heat capacity of the material 

used (Monel, see / 8 / ) .  This resu l t  supports the reasons given above for  regard- 

ing the largest  time constant T I as independent of the s i te  of the heat release. 
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The calorimeter is usually not run isothermally, but with constant heating 

rate. Since the heat resistance and heat capacities depend on the temperature, 

TI also changes with the temperature. Unlike the case of an isothermal calorime- 

ter, the mathematical requirements for the justification of the de-smearing 

method are only approximately valid, particularly with respect to the linearity 

of the system. During the small temperature interval of a few degrees usually 

required for a reaction in the calorimeter, 'I changes only slightly, Thus, a 

correction for de-smearing limited to the first stage is still possible. A value 

for TI is always used which is valid for the middle of the reaction interval. 

No new measurements were performed for determining TI for the anisothermal 

case and for different temperatures. Instead, electrically generated peaks were 

taken which had been used for the enthalpy calibration of the calorimeter. For 

this purpose a constant heating current had been turned on for periods of 5 to 

10 minutes, thus producing a step-like input to the calorimeter. From the rising 

or falling flank of the response the time constant 'I was determined by the tan- 

gent method (see Fig.7). Here it is necessary to place the tangent far enough 

behind the point of inflection that a steady value for the time constant re- 

sults. 

staticmhrer Zustand 

Fig. 7: Tangent method for determining TI from a step response. 

The temperature dependence of TI is specified by the temperature influence on 

the resistance R and on the heat capacities Cc and C,. The heat capacity of the 

measuring cell is constant between 80°C and 600°C, that is, Cc (T) = const. /8/. 

The heat resistance R is given primarily by the heat conduction, in the cell wall 

and the ce,ll mounting. Thus, its temperature coefficient u is that of the heat 

conductivity of the Monel. The temperature coefficients for the heat capacity 

of the samples (various pure metals) are also known. Therefore, it is valid that 

~~ (T) = R, (1 - cxT) (Cc + C, (T)), (5) 
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where T is in 'C. A reduced form of the time constant from which R, can be de- 

termined can be expressed as follows: 

red 

*1 = TI / (1 - aT) = R o . (Cc + C, (T)) (6) 

The presentation of all results in this form is shown by Fig. 8. As can be seen, 

the anisothermally determined points scatter considerably more than those deter- 

mined isothermally, This is not surprising, since the paper feed was set rather 

slow in order to achieve good planimetric results. In addition, the base line is 

not as well established in the anisothermal case as it is in the isothermal. 

c [J/K] 
red 

Fig. 8: Reduced time constant T, as a function 
of the heat capacity of the specimen. 

For a correction, therefore, 'I is used according to Equation (5), with the par- 

ameters R, = 26.8 K/W, a = 1.46.10-3 K-l, Cc = 1.64 J/K. In this way the correc- 

tion for every measurement curve can be performed with no further effort, as is 

shown by the example in Fig. 9. In addition to a noticeable shift of the peak 

toward lower temperatures, the peak maximum is increased. 

Fig. 9: Recrystallization of Silver deformed in Torsion, 
Example of a first order correction. Heating 
rate 0 = 4,45 K/min. 

If only the correction of the peak maximum temperature is of interest, such 

as in kinetic evaluations according to KISSINGER /9/ or OZAWA /lo/, a very sim- 

ple formula can be given. With the bell-shaped measurement curves shown here, 
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the part in the vicinity of the maximum is approximately parabolic. In this 

case, the corrected temperature of the maximum is expressed by 

corr 
T 
max = Tmax - 4 - ~~3 (7) 

0 being the heating rate. With the given approximation formula (7), which is 

also valid for the further correction steps using the time constants ~2 and TS 

(which were not carried out), it is possible to estimate the error remaining 

after the correction: the ratio of the time constants is in the case of this 

calorimeter approximately TI : T* : ‘3 = 20 : 3 : 1. Together with the dead time 

(3 set), the shift of the maximum according to Equation (5) is about 20 % too 

low. Since a further correction step is not feasible for the reasons mentioned 

above, this error remains after the correction. 

Determination of the Correction by Means of a Melting Peak 

Most calorimeters do not have electric calibration equipment. It is then 

necessary to use physico-chemical reactions in order to determine the time con- 

stant 'I. An obvious possibility is the use of melting peaks of pure substances, 

when the calorimeter is anisothermally operated. However, these peaks do not 

meet the requirements for a test function: the heat release is not set compul- 

sorily, but rather develops of itself according to the heat conduction in the 

measuring set-up. Nevertheless, the time constant 'I can be deduced from a 

melting peak. For this one uses the tangent construction such as in Fig. 7 for 

the subsiding flank of the peak. T is determined beginning at a point shortly 

behind the apex of the curve, and progressing for various points along the 

curve. One is far enough from the curve apex when the value for T 

changes. This value is used for the correction as 'I. 

An example for such a correction is shown in Fig. 10. 

L- 
0: U5 Klmin 

I 

mW/g 
33.Lmg Sn 

3- 1st Conccticn 3.66g Cu 

) :T,,,,.:T? 

and first Fig.10: Melting of Indium within a Copper cylinder of 3.66 g 
order correction. Tcorr = corrected Temperature Scale. 

no longer 
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Here an indium sample was placed in a copper cyl inder with a mass of 3.66 g and 

heated over the melting point at a constant rate (~ = 4.45 K/min). The f i r s t  

correction was calculated with the time constant T I. 

I f  the sample is a pure material whose melting point is known exact ly,  the 

temperature axis can be cal ibrated in addit ion to the above correct ion. For this 

purpose the tangent is set up on the l e f t  f lank of the melting peak through i ts  

point of i n f l ec t i on .  The melting temperature is assigned to the intersect ion of 

that tangent with the base l ine.  This corrected temperature scale is then va l id  

for  the peaks de-smeared for  the f i r s t  time constant. 

Summary 

- The usual methods of de-smearing on the basis of test and response functions 

involve an extensive amount of ca lcu lat ion.  

In the case of anisothermal measurements, the mathematical presuppositions 

required for the method are only approximately f u l f i l l e d .  

- For this reason, i t  seems opportune not to attempt a complete correct ion, 

but to aim at an approximate correct ion involv ing r e l a t i ve l y  l i t t l e  e f fo r t .  

- The e lec t r i c  equivalent c i r c u i t  diagram shown here presents the calorimeter 

simply as a non-reactive series c i r c u i t  of t ransfer elements of the f i r s t  

order (R-C elements). Measurements have shown that the calorimeter used here 

can be completely described using only three time constants. 

- I f  only the f i r s t  correction is performed, i t  is possible to calculate by 

means of a simple formula the time constant ~I for  every sample mass and 

peak temperature. 

- Without too much e f f o r t  in ca lcu lat ing,  the largest part of  the smearing 

error can be corrected for  in this manner. 

- The basis for  this procedure are the pulse or step response functions of the 

calorimeter which have been produced by the b u i l t - i n  e lec t r i c  ca l ib ra t ion  

resistors.  

- I t  is also possible to determine the time constant T 1 by using melting peaks. 

In the case of pure materials with known melting points, the temperature 

scale can be cal ibrated at the same time. 

- With r e l a t i v e l y  simple e lectronic means (d i f f e ren t i a t i ng  c i r c u i t ,  sum ampli- 

f i e r ) ,  the f i r s t  correction mentioned above can be performed analogously 

during the measurement. 
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